Towards Reverse Engineering Reversible Logic

نویسندگان

  • Samah Mohamed Saeed
  • Xiaotong Cui
  • Robert Wille
  • Alwin Zulehner
  • Kaijie Wu
  • Rolf Drechsler
  • Ramesh Karri
چکیده

Reversible logic has two main properties. First, the number of inputs is equal to the number of outputs. Second, it implements a one-to-one mapping; i.e., one can reconstruct the inputs from the outputs. These properties enable its applications in building quantum computing architectures. In this paper we study reverse engineering of reversible logic circuits, including reverse engineering of non-reversible functions embedded into reversible circuits. We propose the number of embeddings of non-reversible functions into a reversible circuit as the security metric for reverse engineering. We analyze the security benefits of automatic synthesis of reversible circuits. We use our proposed security metric to show that the functional synthesis approaches yield reversible circuits that are more resilient to reverse engineering than the structural synthesis approaches. Finally, we propose scrambling of the inputs and outputs of a reversible circuit to thwart reverse engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs

Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...

متن کامل

Performance Analysis of Reversible Sequential Circuits Based on Carbon NanoTube Field Effect Transistors (CNTFETs)

This study presents the importance of reversible logic in designing of high performance and low power consumption digital circuits. In our research, the various forms of sequential reversible circuits such as D, T, SR and JK flip-flops are investigated based on carbon nanotube field-effect transistors. All reversible flip-flops are simulated in two voltages, 0.3 and 0.5 Volt. Our results show t...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

NREVERSAL of Fortune - The Thermodynamics of Garbage Collection

The need to reverse a computation arises in many contexts—debugging, editor undoing, optimistic concurrency undoing, speculative computation undoing, trace scheduling, exception handling undoing, database recovery, optimistic discrete event simulations, subjunctive computing, etc. The need to analyze a reversed computation arises in the context of static analysis—liveness analysis, strictness a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1704.08397  شماره 

صفحات  -

تاریخ انتشار 2017